Gas adsorption and desorption in coal thumbnail
Prev Next Zoom 1 of 1
1. n. [Geology]

Abbreviation for coal seam gas. Natural gas, predominantly methane [CH4], generated during coal formation and adsorbed in coal. Natural gas adsorbs to the surfaces of matrix pores within the coal and natural fractures, or cleats, as reservoir pressure increases.

Production of natural gas from coal requires decreasing the pore pressure below the coal’s desorption pressure so that methane will desorb from surfaces, diffuse through the coal matrix and become free gas. Because the diffusivity and permeability of the coal matrix are ultralow, coal must have an extensive cleat system to ensure adequate permeability and flow of methane to wellbores at economic production rates.

Coal seams are typically saturated with water. Consequently, the coal must be dewatered for efficient gas production. Dewatering reduces the hydrostatic pressure and promotes gas desorption from coal. As dewatering progresses, gas production often increases at a rate governed by how quickly gas desorbs from coal, the permeability of the cleat and the relative permeability of the gas-water system in the cleat. Eventually, the rate and amount of gas desorption decreases as the coal seam is depleted of its gas, and production declines.

Coal seams with no water (dry coal) have been discovered and commercially exploited. In these reservoirs, the adsorbed gas is held in place by free gas in the cleats. Consequently, gas production consists of both free gas from the cleat system and desorbed gas from the matrix.

Alternate Form: coal seam gas, coal-seam gas
2. n. [Geophysics]
Abbreviation for common source gather. A display of seismic traces that share a source.
Alternate Form: common source gather