Explore the Energy Glossary

Look up terms beginning with:

spontaneous potential

1. n. [Geophysics]

Naturally occurring (static) electrical potential in the Earth. Spontaneous potentials are usually caused by charge separation in clay or other minerals, by the presence of a semipermeable interface impeding the diffusion of ions through the pore space of rocks, or by natural flow of a conducting fluid (salty water) through the rocks. Variations in SP can be measured in the field and in wellbores to determine variations of ionic concentration in pore fluids of rocks.

Alternate Form: SP

See: diffusion

2. n. [Formation Evaluation]

A log of the natural difference in electrical potential, in millivolts, between an electrode in the borehole and a fixed reference electrode on the surface. The most useful component of this difference is the electrochemical potential since it can cause a significant deflection opposite permeable beds. The magnitude of the deflection depends mainly on the salinity contrast between drilling mud and formation water, and the clay content of the permeable bed. The spontaneous potential (SP) log is therefore used to detect permeable beds and to estimate formation water salinity and formation clay content. The SP log cannot be recorded in nonconductive mud. The SP can be affected by several factors that make interpretation difficult. First, there are other possible sources of electrical potential not related to the electrochemical effect, for example, the electrokinetic potential and bimetallism. Many of these are small and constant throughout the log, and can be lumped together in the shale baseline. Second, the SP can measure only the potential drop in the borehole, and not the full electrochemical potential. The ideal SP opposite a clean bed is known as the static spontaneous potential (SSP), and opposite a shaly bed as the pseudostatic spontaneous potential (PSP). The SP is always less than the SSP or the PSP and more rounded at the boundaries between shales and permeable beds. The SP was first recognized by C. Schlumberger, M. Schlumberger and E.G. Leonardon in 1931, and the first published examples were from Russian oil fields.

See: differential SPfishliquid-junction potentialmembrane potential